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The computaticnal cost in simulating a steady, rarefied gas flow by
use of a particle method is shown to be greatly reduced if the simulation
employs an average number of panticles per cell that is greater than a
certain (approximate) minimum. The minimum vaiue depends on the
rms level of statistical fluctuations judged acceptable in the resultant
data and is found to be significantly greatar than values often usad in
practice when two- and three-dimensional flows are simulated, The
computational cost is found to remain fixed for values greater than the
minimum, showing that the ensemble- and time-averaging operations
become interchangeable. For the problem studied, it is shown that a
regime exists for which computational cost may be reduced by a factor
of 10 by merely increasing the size of the simulation by a factor of five,
when holding the rms level of statistical fluctuations fixed. © 190

Academic Press. Inc.

INTRODUCTION

When using a large collection of simulated particles to
model & molecular flow on a computer, one is interested in
knowing how many particles are nceded in cach small
volume of space in order to properly model the relevant flow
physics; and does the use of this number have a beneficial
effect on computational cost? These important questions
arise irrespective of the particular method used in the
simulation, whether it is the method of molecular dynamics
(Alder and Wainwright [1]), an approach used in simu-
lating ionized gas motion (Hockney and Eastwood [2]),
or the direct simulation Monte Carlo {DSMC) method
employed in the study of rarefied gas flows (Bird [3]). In
addition, it is clear that the number required to obtain a
given level of simulation accuracy when dealing with a non-
steady flow is far larger than that needed for a steady flow
where time averaging may be permitted. Qur discussion will
focus on steady flows and the use of time averaging. In
addition, Bird’s DSMC method was selected for the study
because the calculational effort grows roughly in proportion
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to the total number of particles N, for which the analysis to
be presented is more straightforward, as opposed to N? or
Nlog N.

Beyond the requirement of steady flow, the use of time
averaging to reduce the effect of statistical fluctuations,
which are inhercnt in a particle method, is based on two
assumptions: first, that a sufficicnt number of particles is in
fact present in a computational cell to adequately model the
physics of interest; and second, that a time average can be
used to replace the cell average obtained if a still larger num-
ber of particies were used, or if a large number of repeated
runs for the same conditions were carricd out. If this
replacement is permitted, then the concept of an ensembie
average applies to this situation and its exchange with the
time average leads to the assumption that the ergodic
hypothesis holds. Use of the time average requires that ran-
dom processes associated with a single cell in space at one-
time are statistically independent of those associated with
the same cell at a different time. In other words, the time
interval between samples is greater than the correlation time
for the random quantity being averaged. If all these assump-
tions are valid, then one is able 1o employ a cell sample size
given by 5. = N_T, where N, is the average number of par-
ticles in a single cell and 7" is the number of time steps used
in the time averaging. Because the relative statistical error
for an averaged quantity, defined by the ratio rms/mean,
decreases as S '/ for a statistically independent random
process, one concludes that doubling T allows one to halve
N,, provided that N, is initially large enough. Therefore, as
long as the computational cffort is simply proportional to
S., which is true for Bird’s DSMC method, then the simula-
tion with the smaller N, would be preferred because a
smaller demand is placed on the amount of computer
memory required, while the computational cost and
modelling precision remain the same. Qur objective is to
fully explore these issues with regard to the DSMC method.

The act of doubling T and halving N_ is certainly limited
because one would quickly arrive at a point where too few
particles would be present in a cell to adequately model a
physical gas flow; an obvious example is N.=1. Long



REDUCTION AND ERROR FOR SIMULATIONS 31

before this point is reached, it is clear that the simulation
would lose efficiency and longer and longer time averages
would be required to attempt to obtain the same level of
relative statistical error, thus driving up the computational
cost. Because no theory exists to guide one in determining
how many particles are needed to adequately model given
fluid mechanical processes, to evaluate the corresponding
computational cost, or to determine whether cost can be
reduced by following a particular mode of operation, we
conducted a series of numerical experiments using a
modified version of the DSMC method to explore these
questions. The basic approach followed was to repeatedly
run the same simulation for a given problem while varying
the duration of the time average and the total number
of particles used in the simulation, and then coilect
the appropriate data to evaluate the level of statistical
uncertainty present in the results.

SIMULATIONS

The representative problem chosen for study consisted of
a two-dimensional rarefied flow past a flat plate placed nor-
mal to the oncoming stream as depicted in Figs. 1-3. The
free stream Mach number was set at 8 and the Knudsen
number, based on the plate height, was fixed at 0.1 to clearly
place the flow in the transition regime. A unique charac-
teristic of a rarefied gas flow is that the temperature field
extends much further ahead of a blunt body than the density
or pressure fields, which can be clearly seen by comparing
Figs. 1-3. In order to limit the number of variables in this
first study, the simulated gas chosen consisted of diatomic
nitrogen with rotational nonequilibrium (collision number
set to 5) but no vibrational nonequilibrium. The molecular
collision cross section was modeled using Bird’s variable
hard-sphere model [4], where the value of the exponent in
the inverse power force law was set to 10. The boundary
condition on the flat plate was chosen as isothermal, with
the plate temperature set equal to 7.5 times the free stream
temperature, 2 value typical for high speed flight in the
upper atmosphere. For particles contacting, the plate diffuse
reflection was assumed. Our intention was to study a fairly
straightforward rarefied flow so that the major effects of
interest could be easily identified.

In order to properly explore the questions raised, one
must have access to a method of simulation that has a very
large dynamic range; otherwise the search for modelling
limits would be thwarted by the limitations of the simula-
tion itself, In addition to a large dynamic range, the simula-
tion must be computationally efficient because very large
simulations as well as small simulations must be fully
explored. All our simulations were carried out on the Cray-
YMP and made use of a highly vectorized code written by
McDonald [57 which employs a specialized vectorization-
compatible selection rule for modelling collisions (see
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FIG. 1. Density distribution in a rarefied flow about a flat plate for
M==8and Kn=0.1.

FIG. 2. Temperature distribution in a rarefied flow about a flat plate
for M =8 and Kn=0.1.
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FIG. 3. Pressure distribution in a rarefied flow about a flat plate for
M=8and Kn=0.1.

Baganoff and McDonald [6])} and various programming
steps taken to improve code efficiency, as discussed by
McDonald [5] and Baganoff [7]. The resultant computa-
tional speed of the code was roughly 1.0 us per particle per
time step.

{n defining the problem to be studied, performance con-
siderations led to the selection of simulated wind tunnel
dimensions of 40 cells in the streamwise directions, 55 cells
in the vertical direction (half space), and 3 cells in depth for
a total of 6600 cubical cells. The vertically oriented flat plate
had a haif-height of 10 cells and a streamwise thickness of 3;
sec Figs. 1-3. The upstream mean free path length was set at
2.0 cells, giving the Knudsen number of 0.1 quoted above.
On varying the average particle number density (based on
the entire simulation) from roughily 8 to 121 particies per
cell, the overall size of the simulations thus varied from
roughly 53,000 to 800,000 particles. The fairly large upper
limit was the controlling factor in our selection of a two-
dimensional problem for study, as opposed to a three-
dimensional problem. Our use of a small three-unit depth
for the simulated wind tunnel, while modelling a two-
dimensional problem, was related to the three-dimensional
capability of the code used. This particular selection of
parameters resulted in a run time of approximately 1 s per
time step for the larger simulations, and a corresponding
total run time of roughly 0.5 h. The reference solution, see
Eq. (1) below, employed 800,000 particles and 1689 time
steps for time-averaging the data.

STATISTICAL ERROR

In order to determine the level of statistical fluctuations,
or rms error, associated with a given simulation, one must
consider two items: first, a reference solution is needed
against which all others are compared; and second, a
specific definition for the measure of rms error must be
introduced. For the rarefied flow considered, an exact solu-
tion is simply not available to provide a reference. However,
it will be shown that a procedure can be found for deter-
mining the absolute rms error for each run from an analysis
of the entire group of runs, even without having the exact
solution itself among the group. This apparent logical
contradiction becomes more rational when one learns that
at least one high quality solutton must be present in the
group to give reliable results and that the results of the full
analysis are not much different from the straightforward
approach of using the highest quality run, consisting of the
largest number of particles and the longest time averaging,
as the reference.

With regard to defining the rms level of statistical fluctua-
tions, it is clear that the macroscopic fluid quantities for
density, velocity, temperature, pressure, stress, and heat flux
may exhibit different levels because they represent different
moments of the velocity distribution function. Because
density is the zeroth-order moment, it should exhibit the
smallest ratio of rms error to mean, while pressure and tem-
perature represent second-order moments and the corre-
sponding ratios should be higher. Therefore, the analysis
must distinguish between the different macroscopic
variables. Most of the results given below will be presented
for the temperature variable. In defining a single numerical
measure of error for a particular macroscopic variable, one
could consider a single point in the flow that corresponds to
a particular position of interest or consider an average for
the entire flow field. The definition to be applied will make
use of an average over the flow ficld.

The appropriate concepts are most easily reviewed if the
simplest approach is considered first, i.e., the case consisting
of the largest number of particles and the longest time
averaging is used as the reference, and all other runs are
compared with it. In a simulation, a macroscopic fluid
quantity is first determined from an appropriate average of
data associated with the particles in a single cell and then it
is further averaged as the simulation is advanced in time.
Using the overbar notation to designate a time average, the
symbol g, ; wili be used to represent a time-averaged macro-
scopic fluid quantity g associated with run « and evaluated
for cell i If the corresponding reference quantity g, , is
viewed as an exact mean value, then the square error can be
defined by

5§.i=(qu.i'—q—r.i)2' (1)
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A single dimensionless measure of relative error for the
entire flow can then be introduced by writing

1 Nehs Gos 2
= =g, 2
A=y ) ( ) (2)

s =1 \Gri

where fi, has the interpretation of a dimensionless rms
value. An alternative to (2) that simplifies the computation
somewhat makes use of a single reference mean value, such
as the maximum, and the corresponding relation reads

o LY (- 1)2. ()

Hy = N

On comparing the value of a fluid variable at the stagna-
tion point, or a point of maximum, to its free stream value,
the ratios for density, temperature, and pressure are roughiy
15, 15, 100, respectively, for the case studied; see Figs. 1-3.
Because random fluctuations scale with the size of the local
mean value, it is clear that the relative error g, is heavily
weighted by the large values near the plate while 4, is more
evenly weighted. Figures 4 and 5 give the results from a
series of tests for g, and u,, respectively, for the fluid
temperature variable. The independent variable in the two
figures is the average number of particles per cell defined by
N,.= N /N and the parameter that was varied was the
size of the sample for the entire run defined by S=N, ., T,
where T is the number of time steps used in the time averag-
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FIG. 4. Relative rms error ji, for the temperature variable versus the
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FIG. 5. Relative rms error g, for the temperature variable versus the
average number of particles per cell ¥,, holding the total sample size
S=Nu T fined.

ing. In this analysis all time steps were used in the averaging;
none was skipped. Generally, factors of two were used in
varying the quantities N, ., and T. Comparison of Figs. 4
and 5 shows that the respective curves look very similar
except for their absolute numerical values, which are
different because of the different normalization used in (2}
and (3). The datum point that is missing in the two figures
is the one for which the reference would be compared to
itself. All the curves show the same trend, namely, that the
relative rms error decreased monotonically with increasing
N, for fixed values of the total sample size S. Likewise, it
also decreases monotonically with increasing T for fixed
values of N,. Because the computational effort grows in
proportion to S, the data show that, for fixed computational
cost and for most of the region studied, increasing N, is
clearly more effective than increasing T in producing a small
rms error. Likewise, expression (3) is preferred over (2)
because it is more convenient to evaluate and yet it predicts
essentially the same results.

Alternatively, a theoretical determination of the absolute
rms error, as opposed to the relative rms error, can be found
by first considering two distinct runs («, f), each carried out
with a different number of particles and/or a different
duration of time averaging. If 4, , and g, represent time-
averaged data for the same cell but for two different runs,
then one is able to define a measure of their difference by

5§,&',i= (q_at.i_q,ﬁ,i)z' (4)
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Now, both g, ,; and g, can be considered to be composed
of the exact mean value plus an error; and therefore, their
difference is merely the difference of the two absolute error
terms alone. Consequently, we may write

555,,':(5_’1,5_5,8_5)2- (5)
Il an average is again taken over all cells in the flow, then (5)
leads to the relation

1 Neells
2 _
45 5=

(6)

—2 = = -
N (ea,i_zel,ie,’i.i_'_eﬁ,i}’

cellsq_f,max i=1
where the constant g; . is arbitrarily introduced to non-
dimensionalize the equation. In view of the definition of the
absolute error term &, ,, it is reasonable to treat it as a ran-
dom variable with respect to its subscript /; surely its mean
value is zero. In addition, the two quantities e, , and &,
ought to be statistically independent since they derive from
two independent runs. On this basis the cross product term
in (6) is expected to vanish when the sum is carried out over
all cells (Mg, =06600 for the example studied), thus
reducing the relation to

A p=a;+0,,

(7)
where o2 is a dimensionless spatially averaged absolute
error term defined by

2 1 Neells 3
e > el (8)
cells Qr.max i=1

Equation (7) provides the means for obtaining the
absolute rms error for each run, even without having the
exact solution itself in hand. This follows from the fact that
the left-hand side of (7) can be computed directly for the
different combination of runs using the spatial average of
definition (4), i.e.,

Neetls

1
T e— (q_:x.i_q .5)2'
Ncells qg,max i§1 #

425 (9)

The quantities on the right-hand side of (7) are obtained
from the solution of the resultant set of simultaneous equa-
tions. Clearly the system is over specified, because there are
r(r — 1)/2 distinct entries in the symmetric matrix A i p and
only r unknowns o, where r is the number of different cases
or runs. A discussion of (7) is most easily followed if the runs
are first conceptually ordered with respect to their rms
error, where the smallest is designated as run r. Using this
ordering, it is clear that the entries near the diagonal in the
symmetric matrix 47, are not as useful (small relative
error) as those further removed. Therefore, the system of

cquations can be conveniently reduced, by ignoring the less
useful equations, to a properly specified set, without having
to resort to a least square error method to solve the entire
set. On retaining the subset of (7) for which =1, 2, ..
(r— 1)Yand B =r and then arbitrarily including the equation
a=1and f=(r—1), a closed set of equations is obtained
and it is given by

4%, 1 0.0 1 a2
43, 01 .0 1 ol
N : (10)
4, 00 -1 1f\ o2,
43, _, 1 0-.10 o’

As expected, the solution of (10) varies slightly with
changes in the selection of equations retained and the value
of o2 shows the greatest sensitivity to alterations in the selec-
tion. Nevertheless, Fig. 6 displays the resulting solution of
(10} for our data, again for the temperature variable, and
shows that agreement with Figs. 4 and 5 is quite good,
demonstrating a firm consistency between the three
approaches. The agreement between Figs. 46 therefore
allows one to conclude that the approach defined by Eq. (3)
is much preferred because of its ease in evaluation while still
providing the desired information.

The logical procedure leading to (10) gives spatially
averaged absolute rms error values for the flow. Equivalent
guantitics for individual cells could be found if one were
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FIG. 6. Absolute rms ertor a, for the temperature variable versus the
average number of particles per cell N, as obtained {rom the solution of
Eq. (10).
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willing to consider a greatly increased computational effort.
In Eq. (6) the cross preduct term vanished because of the
spatial averaging. The same term could be made to vanish,
while retaining the index i, if an ensemble average were
introduced instead. This would allow the same development
leading to Eq. (10) except the index [ would be preserved,
thus giving values associated with individual cells. Clearly
the large number of repeated simulations required to carry
out ensemble averaging would be prohibitively expensive in
practice. However, the concept that such data could be
found in principle is important to our understanding of the
method.

COMPUTATIONAL COST

The display of data in each of the Figs. 4-6 reflects the
order in which the numerical simulations were conducted.
For example, consider Fig. 5 and the sequence for which
N, =121 particles/cell. In this case the total number of par-
ticles used in the simulation was set once steady state was
reached, and the time averaging was carried out in steps,
where the total time-averaging period for cach step was
double the previous pertiod. If the conditions of a run hap-
pen to be compatible with the requirements of the ergodic
hypothesis then the rms ecror should decrease as 7~ and
it can be seen from the data for ¥, =121 that a factor of 4
increase in 7 leads to a reduction of rms error by a factor of
2, which is consistent with the ergodic hypothesis. However,
this rule clearly does not apply for all values of N displayed,
but it is difficult to judge from the curves where the rule
begins to fail. The same observation also applies if the data
of Figs. 5 were displayed with 7 being the independent
variable.

On the other hand, if the choice of variables is rearranged
as shown in Fig. 7, then the judgement becomes much easier
to make. The total sample size S= N7, which also
represents the computational cost for the DSMC method, is
shown as a function of the average cell particle density N,
for fixed vaiues of the dimensionless rms error u,. Because
the simulations could not be conducted in this order, these
results were obtained from suitable cross plots of the two
graphical forms p, versus N, and u, versus T. Focusing
attention on the curve for a fixed 4% rms error, it is
evident that two asymptotes exist. For N_ greater than
approximately 100 particles/cell, the ergodic hypothesis
clearly applies; i.e,, the computational cost is constant and
independent of the size of the simulation. This is because in
this limit the rms error is propertional to S ~'? and there-
fore a fixed error implies a fixed $; and a fixed § results in
a fixed computational cost because it is linearly related to S.
Finally, from the definition S= N4 7, a fixed § allows a
free choice of N,y (or 7) and thus cost is independent of
the size of the simulation & ..
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FIG. 7. Total sample size $= N, T, or relative computational cost,
versus the average number of particles per cell N, for the temperature
variable.

Following the same curve for 4% error, we find that for
N, less than approximately 30 particles/cell, the computa-
tional cost rises rapidly with just a small decrease in N_.
This is the region in which the simulation becomes very
inefficient, because there are too few particles in a cell to
adequately model the flow physics. Consequently, one
attempts to make up the severe deficiency with a huge
increase in the period of time averaging. This asymptotic
limit obviously shows that, for a given level of rms error,
there is a minimum N, that is allowed, even if the period of
time averaging were infinite. In retrospect, this is a conclu-
sion that should be expected on physical grounds; however,
the numerical simulations were needed to fix the actual
numerical value at which this occurs. The division between
efficient and inefficient simulations can be conveniently
defined by the knee in the curve, which for the case of 4%
error appears at roughly N, = 30 particles/cell.

Continuing to review the curve for 4% error in Fig. 7, we
see that a five-fold increase in N_from 25 1o 125 particles/cell
leads to a ten-fold decrease in the computational cost. In
other words, a large simulation is less costly than a small
simulation! At first glance, this appears to be counter-
intuitive, but in actual fact it is merely a reflection of the
difference in simulation efficiency at the two extremes. This
is a very important conclusion for this ¢lass of simulations,
because it shows that access to greater computer memory
can have a dramatic effect on reducing the computer run
time. It also points out that for an extremely large simula-
tion that makes use of all available computer memory and
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still does not operate in an efficient mode and which would
normally require several hours of run time, sufficient savings
in time could be realized by switching to an efficient mode
of operation to suggest the possible use of disk read/write to
allow the necessary further increase in ¥, For this same
4% rms error level, we see that roughly 100 particles/cell are
required for an efficient simulation and that for the two-
dimensional example studied (N,.=6600) this translates
into a total of 660,000 total particles required. A similar
three-dimensional problem would require over an order of
magnitude greater number (exact ratio obtained from the
55-cell height to the 3-cell depth used). Because more than
10 words of data storage are needed for each simulated par-
ticle, especially if chemical reactions are modelled, it can be
seen that roughly 120 Mwords of memory are necded for an
efficient simulation, even when the geometrical resolution of
the problem studied is fairly modest, as in our example
problem.

DISCUSSION AND CONCLUSIONS

Many of the past applications of the DSMC method for
two- and three-dimensional problems were conducted at
average number densities of around 15 to 20 particles per
cell. This was done for a number of clesely coupled reasons
relating to the size of available computer memory, code
execution speed, total run time that could be committed,
and the type of machine used. The clear conclusion drawn
from Fig. 7 is that every effort should be made to employ an
average particle number density four or five times greater,
so that full advantage can be taken of the greater simulation
efficiency. This 15 a result that is independent of machine
architecture and depends solely on the physics of rarefied
gas flow and its simulation. However, the ease with which
the desired operating peint can be reached is machine
dependent and does require appropriate consideration.

The obvious questions left unanswered by this study
relate to differences introduced by more complex flow
geometries, the presence of multiple species and chemical
reactions in the simulated gas, rms error specific to a
particular cell as opposed to a single measure for an
entire simulation, and the effect of varying cell size. The
asymptotic limit suggested by each curve in Fig. 7 can be

interpreted as the number of particles needed in a single cell
to give the same accuracy in a single time step. However, the
study was conducted for the case of a steady flow and it does
not follow that this same number would necessarily be valid
for time accurate results. This question would require a
separate study dealing with transient flows. Likewise,
in regions of flow where gradients are steep, as occur in
regions close to solid boundaries where translational non-
equilibrium becomes very important, one is also not able to
conclude from this work that 100 particles per cell is
sufficient to give the same 4% resolution, because the
boundary layer was relatively thick in the example studied,
owing to the fairly high Knudsen number chosen. What has
been shown is that computational cost for the DSMC
method can be reduced in a major way by conducting a
simulation in a regime where the relevant physical processes
are efficiently modelied, even though the modelling requires
the use of significantly greater memory and/or data storage.
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